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Abstract
We examine the topological entanglements of polygons confined to a lattice
tube and under the influence of an external tensile force f . The existence of
the limiting free energy for these so-called stretched polygons is proved and
then, using transfer matrix arguments, a pattern theorem for stretched polygons
is proved. Note that the tube constraint allows us to prove a pattern theorem
for any arbitrary value of f , while without the tube constraint it has so far
only been proved for large values of f . The stretched polygon pattern theorem
is used first to show that the average span per edge of a randomly chosen
n-edge stretched polygon approaches a positive value, non-decreasing in f , as
n → ∞. We then show that the knotting probability of an n-edge stretched
polygon confined to a tube goes to one exponentially as n → ∞. Thus as
n → ∞ when polygons are influenced by a force f , no matter its strength or
direction, topological entanglements, as defined by knotting, occur with high
probability.

PACS numbers: 05.50.+q, 02.10.Kn, 61.25.H−

Introduction

The problem of knotting in ring polymers has been of interest for more than 40 years. For the
model of self-avoiding polygons on a three-dimensional lattice it was proved in 1988 that all
except exponentially few sufficiently long polygons are knotted [1, 2] and similar results were
proved soon after for other models [3, 4]. The recent interest [5] in how polymers respond to a
tensile force as applied, for instance, in atomic force microscopy, prompted interest in knotting
under the influence of a force. For the lattice polygon model, consider a polygon with n edges
subject to a tensile force f (measured in units of inverse length) so that the elastic energy is
f s (dimensionless) where s is the span of the polygon in the direction in which the force is
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applied. There exists a value f0 > 0 such that for any fixed force f > f0 the probability of
knotting goes to unity as n goes to infinity [6]. Note that f must be fixed before n → ∞.

The general approach to proving these results is to prove a pattern theorem [7]. Roughly
speaking, a pattern theorem ensures that any sequence of edges (i.e. a pattern) that can occur
more than once in a polygon will occur at least once in all except exponentially few sufficiently
long polygons. By a suitable choice of pattern the results about knotting follow easily [1]. We
have pattern theorems for lattice polygons for zero force [1] and for sufficiently large forces
[6]. (For self-avoiding walks a pattern theorem has been proved for all positive forces [8].)

If the polygon is confined to a right rectangular prism with infinite height (referred to
herein as a tube) then for f = 0 a pattern theorem has been proved using transfer matrix
methods [9]. This is possible because the confinement means that the problem is essentially
one dimensional. In this paper, we prove a pattern theorem for polygons in a tube with a force
applied along the long axis of the tube, for any value of the applied force. From this it follows
that polygons confined to a tube, subject to any applied force f , are knotted with probability
one in the n → ∞ limit.

Stretched polygons in a tube

The three-dimensional integer lattice is defined to be the infinite graph embedded in R
3 with

vertex set Z
3 and edge set E(Z3) = {{u, v}|u, v ∈ Z

3, |u − v| = 1}, where |u − v| is the
Euclidean distance between u and v. The term subgraph of Z

3 will refer to an embedding of
a graph in Z

3. An n-edge self-avoiding polygon (SAP) is an n-edge connected subgraph of
Z

3 with each vertex having degree 2. For SAPs, n � 4 and even and this will be assumed
henceforth. We will also refer to a SAP as a polygon.

Given integers N � 0 and M � 0, we consider the tubular sublattice T (N,M) of the
simple cubic lattice induced by the vertex set {(x, y, z) ∈ Z

3|0 � x � N, 0 � y � M, z � 0}.
An n-edge SAP in T (N,M) is defined to be an n-edge connected subgraph of T (N,M) with
each vertex having degree 2 and such that there is at least one vertex of the polygon in the
plane z = 0. Define Pn(N,M) to be the set of n-edge SAPs in T (N,M),P(N,M) =
∪n�4Pn(N,M) and pn(N,M) = |Pn(N,M)|. Then, for (N,M) �= (0, 0), the following
limit exists and satisfies [10]:

log μp(N,M) ≡ κp(N,M) ≡ lim
n→∞ n−1 log pn(N,M) = sup

n�4
n−1 log pn(N,M) < ∞. (1)

Given a SAP ω ∈ Pn(N,M), its span is defined to be the maximum z-coordinate over all
the z-coordinates of the vertices in ω and is denoted by s(ω). Given m � 0, we investigate
polygons of span m which are confined to a tube. We assume that a force f parallel to the
z-axis, perpendicular to and incident on the plane z = m is applied to a single ring polymer
modelled by a SAP. Figure 1 illustrates an example of such a scenario.

The partition function of this model is defined to be

Zn(N,M; f ) =
(n/2)−1∑

m=0

pn(N,M;m) ef m, (2)

where pn(N,M;m) denotes the number of n-edge SAPs with span m in Pn(N,M). If
f > 0 then the force is a tensile force, tending to stretch the polygon in the z-direction
and the polygons influenced by this force are called stretched polygons [6]. On the other
hand, if f < 0, then the force tends to push the planes z = 0 and z = m together. Here,
for convenience, regardless of the sign of f we call the polygons under the influence of f

stretched polygons.

2



J. Phys. A: Math. Theor. 42 (2009) 322002 Fast Track Communication

x

0f

y

z

Figure 1. Example of a polygon confined to a tube and subject to a force f .

Let Wn be a random n-edge stretched polygon with probability mass function (pmf) given
by

P(Wn = ω) = ef s(ω)

Zn(N,M; f )
, for all ω ∈ Pn(N,M). (3)

One goal here is to investigate the behaviour of the expected value of s(Wn) as a function
of f . To do this, we first prove some results about the asymptotic behaviour of the partition
function.

As discussed in [10, section 4], for polygons in T (N,M) there exist non-negative values
cT and tT , cT � 2tT , such that concatenating an n1-edge polygon with span m1 to an n2-edge
polygon with span (m − m1) results in an (n1 + n2 + cT )-edge polygon with span (m + tT ).
Therefore, the following inequality holds

n1
2 −1∑

m1=0

pn1(N,M;m1)pn2(N,M;m − m1) � pn1+n2+cT
(N,M;m + tT ). (4)

Multiplying both sides of this inequality by ef m and summing over m gives rise to

Zn1(N,M; f )Zn2(N,M; f ) � e−f tT Zn1+n2+cT
(N,M; f ), (5)

where we have used the facts that cT � 2tT , n1/2−1 < m and n1 � 2m1. Furthermore, using
equation (1)

max{1, ef (n−1)/2} � Zn(N,M; f ) =
n
2 −1∑
m=0

pn(N,M;m)ef m

� max{1, ef (n−1)/2}(μp(N,M))n. (6)

We next use these facts to establish the existence and other properties of the limiting free
energy for the model. Note that the series of results presented next follow mutatis mutandis
from the arguments given in [6, theorem 2.1] for polygons in Z

3 without the tube constraint.
Letting an = log

(
ef tT Zn−cT

(N,M; f )
)
, equation (5) implies that {an} is a super-additive

sequence. Therefore, standard arguments (see [11–14]) together with the final bound from
equation (6) show that the limiting free energy, F(N,M; f ), exists and satisfies

F(N,M; f ) ≡ lim
n→∞ n−1 log Zn(N,M; f ) = sup

n�4
n−1an < ∞. (7)

Equation (6) leads to bounds on the free energy: for f � 0

f/2 � F(N,M; f ) � log μp(N,M) + f/2, (8)

3
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while for f < 0

0 � F(N,M; f ) � log μp(N,M). (9)

The Cauchy–Schwartz inequality gives immediately that the function Zn(N,M; f ) is a
log-convex function of f . Hence Fn(N,M; f ) = n−1 log Zn(N,M; f ) is convex in f and
equation (7) gives that (see [14, 15]) F(N,M; f ) is also convex in f . Furthermore [14, 15],
F(N,M; f ) is continuous and differentiable almost everywhere (a.e.) with a non-decreasing
derivative in f such that a.e.:

lim
n→∞(dFn(N,M; f )/df ) = dF(N,M; f )/df. (10)

Thus

n
d

df
Fn(N,M; f ) = d

df

[
log Zn(N,M; f )

]

=
∑(n/2)−1

m=0 mpn(N,M;m)ef m

Zn(N,M; f )

= Ef (s(Wn)) (11)

is non-decreasing in f , where the expected value is with respect to the pmf of equation (3).
Furthermore, by equation (10), the following limit exists a.e. and is non-decreasing in f :

lim
n→∞

Ef (s(Wn))

n
= lim

n→∞
d

df
Fn(N,M; f ). (12)

Pattern theorem

In this section, the transfer matrix arguments used by Soteros [9] to prove a pattern theorem for
SAPs in a tube with f = 0 are generalized to prove a pattern theorem for stretched polygons
subject to an arbitrary fixed force f .

Given any integers k � 0 and i � 1 we define the ith k-tube to be the sublattice of the
(N,M)-tube induced by the vertex set {(x, y, z) ∈ Z

3|0 � x � N, 0 � y � M, i − 1 � z �
i − 1 + k}. Given a polygon G ∈ P(N,M) with span m and given integers k and i such that
0 � k � m and 1 � i � m−k+1,G’s configuration in the ith k-tube consists of this sublattice
plus G’s edges in it with a specific relative ordering assigned to them (see, for example, figure 2).
The specific relative ordering comes from a specified order on the edges of G which is defined
as follows (see also [9]). Let vb and eb = {vb, v} be respectively the bottom vertex and edge
of G (see [9] for standard definitions of bottom vertex and edge). A direction is assigned to
eb by directing the edge to go from vb to v. This naturally induces an ordering on G starting
with edge eb as the first edge and ordering the other edges following the direction induced
by that of eb. For convenience, G’s configuration in the ith k-tube is referred to as the SAP
configuration with span k (k-config for short) of G which occurs at the ith subsection of G.

Hence the k-config at the ith subsection of G is defined not just by the edges of G in the
ith k-tube but also by their relative ordering, according to the assigned order on the edges in
G. Any two k-configs are considered equivalent if they have the same set of occupied vertices
and edges (up to z-translation) and have the same relative ordering on their edges. Any
k-config that occurs at the first, i = 1, (last, i = s(G) − k + 1) subsection of some polygon
G ∈ P(N,M) is referred to as a start (end) k-config. Any k-config that occurs at the ith
subsection, 2 � i � s(G) − k, of some polygon G ∈ P(N,M) with s(G) � k + 2 is referred
to as a proper k-config.

Given k � 2, let �(k),�1(k) and �2(k) be the sets of distinct k-configs corresponding
to the proper, start and end k-configs respectively such that each k-config is considered to be a
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Figure 2. (a) An example of a 22-edge oriented polygon with span 4 in T (4, 0). The first edge is
eb , the bottom edge of the polygon. (b) The associated SAP configurations with span 2 (2-configs).
The number beside an edge indicates its relative order.

configuration on the first k-tube of T (N,M). Define a digraph Dk = (Vk, Ak) as follows: let
the k-configs in �(k) ∪ �1(k) ∪ �2(k) be the vertices of the digraph, i.e.

Vk = �(k) ∪ �1(k) ∪ �2(k) = {P1, P2, . . . , P|Vk |}. (13)

An arc from Pi to Pj belongs to Ak if and only if the configuration of the k-config Pi on the
second (k−1)-tube is equivalent to the configuration of the k-config Pj on the first (k−1)-tube.

It can be shown that �(k),�1(k) and �2(k) and their corresponding digraph Dk satisfy
the following: given r � 2, consider a walk, Pi1 , Pi2 , Pi3 , . . . , Pir−1 , Pir , on the digraph with
length r − 1 where Pi1 ∈ �1(k), Pir ∈ �2(k) and, for r � 3, Pij ∈ �(k) for 2 � j � r − 1
(this is also called a sequence of correctly connected k-configs). Dk has the property that every
such walk defines a span r + k −1 polygon G ∈ P(N,M) starting (ending) with the config Pi1

(Pir ) and in which, for r � 3, config Pij occurs at the j th subsection, for j = 2, . . . , r − 1.
Moreover, any span r + k − 1 SAP G ∈ P(N,M) starting with config Pi1 and ending with
config Pir corresponds to a walk of length r − 1 on Dk as above.

Using this digraph we can define a transfer matrix as follows. First, since each k-config
is contained in a finite subgraph of the lattice (namely the first k-tube) and there is only a
finite number of ways to assign a relative ordering to its edges, there is a finite number of such
configs. Hence, let

�(k) = {P1, P2, . . . , P|�(k)|}, �1(k) = {
P ′

1, P
′
2, . . . , P

′
|�1(k)|

}
,

�2(k) = {
P ′′

1 , P ′′
2 , . . . , P ′′

|�2(k)|
}
. (14)

As discussed above, a walk in the digraph which starts with a start config, ends with an end
config and otherwise only traverses proper configs leads to a polygon in P(N,M). The goal
is to define a transfer matrix so that each such walk gets weighted by xnef m, where n is the
number of edges and m is the span of the resulting polygon, and the weight is calculated
using the configs traversed in the walk. Given k � 2, the span of the polygon is obtained
simply by adding k − 1 to the number of configs traversed in the walk. However, because
subsequent configs in the walk correspond to overlapping configs in the polygon, edges must
be counted more carefully so as to avoid overcounting. To do this properly, for both start
and proper configs traversed, only edges in the first 1-tube of the config are considered while

5
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for an end config, all the edges in the config are counted. That is, for any 1 � i � |�(k)|
(1 � i � |�1(k)|), define ei (e′

i ) to be the number of edges of Pi (P ′
i ) within the first 1-tube but

not in the plane z = 1 and, for any 1 � i � |�2(k)|, define e′′
i to be the total number of edges

in P ′′
i . This allows for the definition of the |�(k)| × |�(k)| transfer matrix G(x) = (gi,j (x))

as follows:

gi,j (x) =
{
xei if (Pi, Pj ) ∈ Ak, Pi, Pj ∈ �(k)

0 otherwise.
(15)

Define also the |�1(k)| × |�(k)| matrix B(x) = (ui,j (x)) as follows:

ui,j (x) =
{
xe′

i if (P ′
i , Pj ) ∈ Ak, P

′
i ∈ �1(k), Pj ∈ �(k)

0 otherwise.
(16)

Similarly define the |�(k)| × |�2(k)| matrix C(x) = (νi,j (x)) as follows:

νi,j (x) =
{
xe′′

i if (Pi, P
′′
j ) ∈ Ak, Pi ∈ �(k), P ′′

j ∈ �2(k)

0 otherwise.
(17)

Given any x > 0, it can be shown using concatenation that for any pair of proper configs
Pi, Pj ∈ �(k) there exists an integer m such that (G(x)m)i,j > 0. To see this, start with
a polygon in P(N,M) in which proper config Pi occurs and concatenate it to a polygon in
P(N,M) in which proper config Pj occurs. This yields a polygon in P(N,M) in which Pi

occurs at some subsection and config Pj occurs at a later subsection. From this one obtains
a sequence of m correctly connected configs starting with config Pi and ending in config Pj .
Thus for any x > 0,G(x) is an irreducible matrix and since at least one diagonal entry of
G(x) can be shown to be non-zero, G(x) is also an aperiodic matrix.

Given x > 0, r � 2, consider a sequence of r correctly connected k-configs of
the form P ′

i1
, Pi2 , Pi3 , . . . , Pir−1 , P

′′
ir

, such that ui1,i2(x) �= 0, νir−1,ir (x) �= 0, and, for
r � 3, gij ,ij+1(x) �= 0 for 2 � j � r − 2. This sequence defines a span r + k − 1 cluster,
G, starting (ending) with config P ′

i1
(P ′′

ir
) and in which, for r � 3, proper config Pij occurs

at the j th subsection, for j = 2, . . . , r − 1. The weight associated with this polygon in

(B(x)G(x)r−2C(x))i1,ir is x
e′
i1

+e′′
ir

+
∑r−1

j=2 eij = xe(G), where e(G) is the total number of edges in
G and if r = 2 the last sum in the exponent is zero. Hence the weight associated with this
polygon in ef (k+1)(B(x)[ef G(x)]r−2C(x))i1,ir is xe(G)ef s(G).

Also, given r � 2, any polygon with span r + k − 1 inP(N,M) starting with config P ′
i1

and
ending with config P ′′

ir
can be decomposed into a sequence of r configs as above. Thus for any

fixed real f and fixed integer k � 2, the generating function Q(x, f ) = ∑
n�4 Zn(N,M; f )xn

satisfies the following:

Q(x, f ) = Q1(x, f ) + Q2(x, f ), where (18)

Q2(x, f ) = ef (k+1)

∞∑
h=0

�1(k)∑
i=1

�2(k)∑
j=1

(B(x)[ef G(x)]hC(x))i,j , (19)

and Q1(x, f ) = ∑h(k)
n=4

∑
m�k pn(N,M;m) ef mxn is the analytic (since it is a finite sum)

contribution to Q(x, f ) due to SAPs with span at most k. Given a fixed f , using standard
results from linear algebra and Perron–Frobenius Theory [18], there exists x0(f ) > 0 such
that for all |x| < x0(f )

Q2(x, f ) = 1

det(I − ef G(x))

�1(k)∑
i=1

�2(k)∑
j=1

�(k)∑
o=1

�(k)∑
l=1

ui,l(x) det(I − ef G(x); o, l)νo,j (x), (20)

6
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where (A; o, l) represents the matrix obtained by removing the lth row and oth column from
a given matrix A. The large n properties of Zn(N,M; f ) can be determined from the non-
analyticities of Q(x, f ) which are the same as those of Q2(x, f ). As presented below, these
can be determined from the matrix ef G(x).

The transfer matrix G(x) is essentially the same as the transfer matrix defined in [9].
Hence the proof of the pattern theorem in [9, theorem 6.1], which is based on Perron–
Frobenius theory [18] and arguments the same as those used in [16, lemma 9 and theorem 3],
applies again here with only minor modifications to accommodate replacing G(x) by ef G(x)

(see also [17] for further generalizations of this argument). This results in the following pattern
theorem for stretched polygons.

Theorem 1. For any integer k � 2, any proper k-config P ∈ �(k) and any real fixed force f ,
there exist non-negative values βf and x0(f ) such that

Q(x, f ) → βf (x0(f ) − x)−1 as x → x0(f ) (21)

and

Zn(N,M; f ) = βf (x0(f ))−n−1 + o((x0(f ))−n) as n → ∞, (22)

with x0(f ) the unique non-negative value of x such that e−f is an eigenvalue of G(x).
Moreover, there exist non-negative values x̄0(f ) > x0(f ) and ᾱf such that

Zn(N,M; P̄ , f ) = ᾱf (x̄0(f ))−n + o((x̄0(f ))−n) as n → ∞, (23)

where Zn(N,M; P̄ , f ) = ∑
m pn(N,M; P̄ , m)ef m with pn(N,M; P̄ , m) the number of span

m SAPs in Pn(N,M) in which P never occurs.

Similarly the proof of [16, theorem 9] can be modified in a straightforward manner to
prove the following result for stretched polygons.

Theorem 2. Given any f , then there exists γf > 0 such that as n → ∞
Ef (s(Wn)) = γf n + O(1), (24)

where Wn has pmf given by equation (3). Thus the following limit exists everywhere and (by
equation (12) ) is non-decreasing in f

lim
n→∞

1

n
Ef (s(Wn)) = γf . (25)

Entanglement complexity of stretched polygons

Having the pattern theorem for stretched polygons in a tube, we can now discuss their knotting
probability. In particular, we can take P to be a tight trefoil pattern (e.g. the pattern shown in
figure 3) in T (N,M) and prove that the knotting probability goes to one as n → ∞ for any
arbitrary value of f .

Let

Z◦
n(N,M; f ) =

n/2−1∑
m=0

p◦
n(N,M;m) ef m, (26)

where p◦
n(N,M;m) is the number of unknotted n-edge SAPs with span m in T (N,M).

Concatenating two unknotted polygons results in an unknotted polygon, so the proof of

7
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Figure 3. A tight trefoil 6-config in T (2, 1) such that its occurrence in any polygon guarantees
that the polygon is knotted.

equation (7) can be modified in a straightforward fashion to show the existence of the limiting
free energy for unknotted stretched polygons:

Fo(N,M; f ) ≡ lim
n→∞ n−1 log Zo

n(N,M; f ). (27)

For the tight trefoil proper SAP 6-config P, as shown in figure 3, an n-edge unknotted
polygon cannot contain P. Hence

p◦
n(N,M;m) � pn(N,M; P̄ , m). (28)

Multiplying both sides by ef m and summing over m gives

Zo
n(N,M; f ) � Zn(N,M; P̄ , f ). (29)

Taking logarithms, multiplying both sides by n−1 and letting n → ∞ gives

Fo(N,M; f ) � F(N,M; P̄ , f ) < F(N,M; f ), (30)

where the final inequality comes from the pattern theorem for stretched polygons, theorem 1.
Thus the probability that a stretched polygon is knotted satisfies

Zn(N,M; f ) − Zo
n(N,M; f )

Zn(N,M; f )
= 1 − Zo

n(N,M; f )

Zn(N,M; f )
= 1 − e−(F(N,M;f )−Fo(N,M;f ))n+o(n),

(31)

which goes to one exponentially as n → ∞.
The proof of [16, theorem 7] (see also [17]) can also be modified in a straightforward

manner to give the following result for the density of proper 6-config P in stretched polygons.

Theorem 3. Given T (N,M) with N � 2 and M � 1 and any f , there exists δf > 0 such
that as n → ∞

Ef (nP (Wn)) = δf n + O(1), (32)

where Wn has pmf given by equation (3) and nP (Wn) is the number of 6-configs in Wn which
are equivalent to P. Thus the following limit exists

lim
n→∞

1

n
Ef (nP (Wn)) = δf . (33)

Therefore, most random stretched polygons have a non-zero density of trefoils in their
knot decomposition.

8
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Discussion

We proved a pattern theorem for polygons confined to a tube in Z
3 and subject to a force and

we used this to show that trefoils occur with high probability in the knot decomposition of
large confined polygons for any value of the applied force. The same approach can be used
for any other knot type (provided that the cross section of the tube is large enough to admit the
knot) and the approach can be extended to show that each knot type occurs a positive density
of times for sufficiently large confined polygons for any value of the force. This implies that
the polygons have a high degree of topological entanglement complexity. We also use the
convexity of the limiting free energy and transfer matrix arguments to prove that the expected
span per edge of large confined polygons approaches a positive value which is non-decreasing
in the applied force f .

The same approach can be applied to investigate the topological entanglement complexity
of loops (graphs with two vertices of degree 1 in the plane z = 0 and all other vertices of
degree 2) confined to a tube. The results are essentially identical to those for polygons.
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